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1. Introduction 

The independent-particle model [1] of the N-electron systems can be well 
established by the Hartree-Fock theory, which is often used as its synonym. 
Of course, there are other possibilities how to choose the "best" independent- 
particle wave function (Slater determinant). The most important and useful 
alternative methods for the determination of an orthonormal set of one-particle 
functions (orbitals) from which the independent-particle wave function is built up 
are the following. 

1.1. The Brueckner (or Maximum-overlap) Orbitals (BO) 

This type of orbitals has been suggested by Brueckner [2] in an attempt to 
surmount the difficulties associated with hard-core internuclear potential. The 
BO's are defined in two different (but completely equivalent [8]) ways: 

(1) Through the Brillouin-Brueckner condition [3-4] ,  which states that the 
matrix elements of the reaction operator [5] T (defined for the non-degenerate 
ground state) between the unperturbed state vector (independent-particle wave 
function) [~o) and the mono-excited configurations X~ + Xh[~0) vanish, 

(~o1 TXp+Xh[~o)=O. (1.1) 

Here Xp + and X h are creation and annihilation operators, respectively, related 
to the orthonormal set of BO's. 

(2) And the maximum-overlap criterion [6, 7], according to which an overlap 
between the exact ground-state vector I~o) and the unperturbed state vector 
I~o) is maximized, 

(~o  [ ~o)  = max.  (1.2) 
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If the variation of (1.2) is performed [-8], the result is 

( 'olX+ Xht o)=O, (1.3) 
i.e. the mono-excited configurations do not contribute to [To). In the recent paper 
of Paldus et al. [9], some interesting points related to stability conditions of (1.2) 
have been clarified. The same result (and essentialy the same derivation) was 
discovered independently by Vojtik 1-t0]. 

1.2. The Natural Orbitals (NO) 

These orbitals have been introduced into general theory of N-electron systems 
by LSwdin [11] for the acceleration of the convergence of the CI-like expansion 
of the wave function. The NO's are defined through the condition that the first- 
order density matrix ? --- {7ii} should be diagonal in the space of NO's, 

?ij = (To [ Xi + Xj[ To) = ni60 . (1.4) 

The occupation numbers ni which occure in this equation satisfy the conditions 

O<ni< 1, (1.5a) 

~ n i = N .  (1.5b) 
i 

The criterion (1.4) has been modified by Kobe [12] requiring that the number 
of electrons above (in) the Fermi sea (FS) be minimized (maximized), i.e. 

N>= ~ (To]X+Xp]To)=min,  (1.6a) 
pCFS 

N< = ~ (~eolX;- XhlTo)=max, (1.6b) 
heFS 

the total number of electrons is N = N< + N>. As was pointed out by Schiifer and 
Weidenmtiller [-13], it follows from this principle that 

"yph = (TolX~- Xh[TO) = 0 ,  (1.7) 

together with the complex conjugate condition. Orbitals that satisfy this condition 
are called generalized natural orbitlas [-,13] (GNO). The NO's are the special case 
where 7ij are completely diagonal, i.e. ?~j = n~fi~j. 

Unfortunately, there are some formal difficulties with the calculation of the 
BO's or (G)NO's. These difficulties arise from the fact that in their definition 
the exact wave function (or the exact reaction operator) appears. Thus an exact 
solution of a given N-electron SchrSdinger equation is required for their calcula- 
tion. In order to avoid this difficulty, a wide variety of approximate methods for 
the calculation of the BO's [-,14-18] as well as NO's [-,19-24] was suggested and 
applied to small many-electron systems. Indeed, up to the presence, these orbitals 
are of more theoretical [1, 7, 8, 12] than of practical significance. 

Let us now interrupt our introductory remarks and turn our attention to some 
very interesting conclusions from the recent attempts of the direct calculations 
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of the low-lying ionization potentials [25-30] as well as excitation energies 
[-30-32] by the diagrammatic perturbation theory, based on the Hartree-Fock 
orbitals. For the good agreement of the calculated ionization potentials with 
experimental values, at least the third-order diagrammatic contributions should 
be taken into account. Moreover, in special cases [26, 27], the third-order 
diagrammatic contributions should be completed by infinite summations of 
some pertinent diagrams. A similar situation, and probably even worse, exists 
also for the excitation energies [31, 32]. Here, even the complete third-order 
diagrammatic contributions do not provide a satisfactory agreement of the 
calculated with the exact low-lying excitation energies. A usual way to remove this 
drawback of the Hartree-Fock orbitals is based on the concept of the "new" 
renormalized one- and/or two-particle interaction a well-known method in the 
modem microscopic theory of nuclei [33-38]. The above mentioned infinite 
summations of some pertinent diagrams may be taken as a rudimentary realization 
of this concept. Unfortunately, a correct theoretical treatment of the renormalized 
interactions for finite nonhomogeneous N-electron systems is quite complex 
problem and contains many unresolved theoretical as well as computational 
pitfalls. For example, the problem of overcounting of diagrams should be treated 
very carefully. 

From these remarks it follows that the Hartree-Foek theory does not form the 
best frame for the direct diagrammatic-perturbation calculation of the ionization 
potentials and excitation energies. In this connection it seems promising to 
turn attention to another type of the one-particle functions, namely, to the BO's 
and (G) NO's. This possibility has been shown in the recent works concerning the 
microscopic theory of nuclei [33-38], to be very closely related to the technique 
of the renormalized interactions. For example, Brandow [35] and Kirson [39] 
extensively studied the problem of the acceleration of the convergence of diagram- 
matic-perturbation expansions. They have introduced a special sort of the one- 
particle functions, which lie intermediate between BO's and NO's, and ensure 
that a maximal number of diagrams of the prescribed type is cancelled. 

An applicability and potentiality of BO's and/or (G) NO's in the diagrammatic 
perturbation theory needs, however, that these orbitals should be determined 
through a one-particle Hermitian eigenvalue problem. Thus, we have obtained a 
promising linkage between the problem of the direct calculation of the low-lying 
excitation energies and ionization potentials, and the problem of the construction 
of the one-particle eigenvalue problem determining the BO's or GNO's, which is 
the scope of the present communication. 

2. Auxiliary Remarks 

Let us consider an atomic or molecular N-electron system with fixed skelet on 
of nuclei. Neglecting relativistic and magnetic effects, and assuming that in the 
zero-order approximation the above system is described by unperturbed (inde- 
pendent-particle) state vector 

I'fo> = H x,  + IO>, (2.1) 
I~FS 
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the Hamiltonian H can be written in the form [40] 

H =  (~o lHl~o>  +Ho + / / 1 ,  (2.2a) 

H o = ~ e i N [ X ,  + X,], (2.2b) 
/ 

/-/1 = H1 - U,  (2.2c) 

B 1 = (1/4) Z (/J] k l ) a  N[Xi + XjXIXk], (2.2d) 
ijkl 

U =  ~ ( i l u l j )  N[X~+ X j ] ,  (2.2e) 
ij 

where N[---] is the normal product (defined with respect to 14~0) ) of the creation 
(Xi +) and annihilation (Xj) operators, and ( / j lk / )a  are the antisymmetrized two- 
particle matrix elements of the Coulomb repulsion between electrons. The creation 
and annihilation operators are defined on the orthonormal set of orbitals 

{]i); i = 1, 2 .... }, (2.3) 

which are the eigenfunctions of the one-particle Hermitian characteristic problem 

f [ i )  = eili), (i1 f [j) = eifi~, (2.4) 

( i ] f [ j )  = (il f0tJ) + ( i l u [ j ) .  (2.4b) 

Here fo is the well-known Hartree-Fock operator defined with respect to Iqio). 
The Hermitian one-particle matrix elements (i] u [j) = (.j] u ]i)* [cf. also Eqs. (2.2c) 
and (2.2e)] will be specified in the following Section, and will depend on whether 
we calculate BO's or GNO's. 

The perturbed exact ground-state vector ]%)  (normalized in the "inter- 
mediate" way, i.e. by the requirement (~/io[ % )  = 1) is, in the framework of the 
diagrammatic perturbation theory, determined by [41, 42] 

oo 

Here the operator R. generates the n-fold excited unperturbed states (configura- 
tions) 

R .=(n! )  -2 2 A ( p l P 2 " " P . ; h a h 2 " " h . ) X ~ ' " X ~ X h . ' " X h l "  (2.6) 
h 1 h2. . .  h,,teFS 
pl  P2...pnq~FS 

The matrix elements A ( p , . . .  ; ... hn) are determined by the following diagrammatic- 
perturbation expansion formula [41, 42] 

A(pIP2...P,,; hah2...h,,) = ~ A(q)(plp2...p,; hlh2 . . .hn) ,  (2.7a) 
q = 0  

A~q + 1)(p 1 P2.. .  P,; hi h2. . .  h,) = (ehl + eh2 + "'" + en. -- ep, -- ep2 -- . . . .  ep.)-  1 
(2.7b) 

�9 
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Fig. 1. The two- and one-particle vertices in the Hugenholtz graphology 
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Fig. 2. Hugenho l t z '  d i a g r a m s  con t r i bu t i ng  to the coefficient A(p, h) up to  the second o rde r  

where the subscript LC means that only linked-connected diagrams contribute 
(we use the Hugenholtz [41, 42] diagrammatic technique and his classification 
of diagrams, cf. also Fig. 1). For the 1 hole-1 particle case (when n = 1), this formula 
can be rewritten in the following form (cf. also Fig. 2) 

A(p, h) = (eh -- ~p)- 1 [ _  (p[ u[h ) + A(p, h)], (2.8a) 

r (~o[ X~-X,  H1 H a I~o>Lc, (2.8b) 
t / = l  

where the matrix elements /l(p, h) express the higher-order contributions than 
first-order contributions to (e h - ep) A(p, h). 

Now, we turn our attention to the diagrammatic-perturbation calculation 
of the first-order reduced density matrix corresponding to the exact ground state. 
According to Thouless'linked-cluster theorem [43], the matrix elements ?~j of 
the exact first-order reduced density matrix are equal to 

?i j = / I ~  ,=o <q~ol ~ Y ]q~o>c,j, 

where ~,~.o) is the zero-order (Hartree-Fock approximation) density matrix deter- l t J  

mined by 
(o) {60i~ for i , j ~ F S ,  (2.10) 
*J = other cases. 
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Fig. 3. The first and second order diagrammatic contributions to the element 7ph of the first-order 
reduced density matrix. The heavy black dots correspond to the "virtual" one-particle vertex 

The operator Y is equal either to X~ + Xj or//1 in such a way that the vertex corre- 
sponding to X~§ occurs only once in all succesive places. The subscript C v 
means that only those ground-state connected diagrams contribute in which 
summations corresponding to the hole and/or particle "external" lines where 
indices i and j are omitted. The Hugenholtz diagrams contributing to Ykh (h e FS, 
p ~ FS) up to the second order are illustrated in Fig. 3. Then, by using the rules 
of Hugenholtz' graphology [41, 42], we obtain from this diagrammatic expression 

Yph = (eh -- ep) -1 (-- (Pl ulh) + ~ph), (2.11 a) 

y 1 
~ph=(~h--,gp) n~__l(~O, (---H~o Y)"/~o>c.h. (2.11 b) 

Here the matrix elements Pph express the higher-order contributions than first- 
order contributions to (eh -- ep) ?ph" 

3. Construction of the One Particle Pseudoeigenvalue Problem 

As we have mentioned in Section 1, BO's can be determined by the Condi- 
tion (1.3), which states that the exact ground-state vector does not contain the 
mono-excited configurations (1 particle-1 hole unperturbed state vectors). Ex- 
plicitly, 

R1 = 0 ,  (3.1) 

where R1 is the operator defined by (2.6) generating the mono-exdted configura- 
tions in the linked-cluster expansion formula (2.5). According to (2.6) the necessary 
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and sufficient conditions for (3.1) are 

A(p, h) = 0, (3.2) 

for all possible pC FS and he  FS. According to (2.8a) the above property is 
equivalent to 

(pl ulh ) = A(p, h), (3.3) 

where the quantities A(p, h) are defined by (2.8 b). The Condition (3.3) determines 
the matrix elements (Pl ulh). Similarly, from the Hermitian conjugated form of 
(3.t), R~ =0, we obtain (hi ulp)=A(p, h)*, i.e. 

(p[ ulh) = (hi ulp)* . (3.4) 

Accordingly, the "off-diagonal blocks" of the matrix elements {(Pl ulh); p ~ FS, 
h ~ FS} form a part of a Hermitian matrix. Thus, starting from the general Condi- 
tion (3.1) determining the BO's we have determined the matrix elements (Pl ulh) 
from the one-particle pseudoeigenvalue problem (2.4). 

A similar approach may be used for the construction of the matrix elements 
(Pl uth) in the case of GNO's. Substitution of the Conditions (1.7) into (2.11 a) gives 

(p] ulh) = ~eh, (3.5) 

for all possible p r FS and h 6 FS. Here the Hermitian matrix elements Pph = ~7*p 
are defined by (2.t l b), i.e. the Condition (3.4) is automatically satisfied also 
for GNO's. 

To summarize, starting from the Condition (1.3) or (1.7) we have obtained two 
alternative definitions of the matrix elements (Pl ulh) from the one-particle 
psuedoeigenvalue problem (2.4) defining the orthonormal set either BO's or 
GNO's. For complete specification of the corresponding pseudoeigenvalue 
problem (2.4) we must know also "diagonal blocks" of the matrix elements 
{(p] ulp'); p, p' r FS} and {(hi ulh'); h, h'~ US}. Furthermore, as follows from the 
diagrammatic expressions for the matrix elements A(p, h) and ~ph (cf. also Figs. 2 
and 3), the matrix elements (Pl ulh) are implicitly determined through the matrix 
elements (hi ulh') and (Pl ulp'). Unfortunately, these matrix elements are not 
determined directly by the Conditions (1.3) and (1.7). This paradoxical observation 
is in close relation to the fact that Conditions (1.3) and (1.7) describe merely a 
factorization of the space of orbitals into two orthogonal subspaces, namely, into 
the subspace of the occupied (within FS) and the subspace of the unoccupied 
(above FS) orbitals, respectively. Moreover, the Conditions (1.3) and (1.7) are 
invariant with respect to separate unitary transformations of the occupied and/or 
unoccupied orbitals. Physically relevant is only the above mentioned factorization 
uniquely determined by the matrix elements (Pl ulh). The remaining matrix 
elements (p] ulp') and (hi ulh') where h, h' e FS and p, p' r FS determine only an 
additional factorization within the subspaces of the occupied and unoccupied 
orbitals, respectively. A similar situation exists also in the Hartree-Fock theory 
based on the Brillouin theorem 1-44]. This theorem can be reduced to the form 
(Pl folh)=0,  where f0 is the Hartree-Fock operator defined with respect to 
I~o), and h ~ FS, p ~ FS. Thus, the Brillouin theorem, similarly as the Condi- 
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tions (1.3) and (1.7), serves only as a factorization procedure of the orbitals into 
two orthogonal subspaces of the occupied and unoccupied orbitals. However, in 
the Hartree-Fock theory the situation is simpler than in the theory of the BO's 
or GNO's, since the explicit form of the Hartree-Fock operator f0 is known. 
Postulating the "canonical" Hartree-Fock orbitals [44] (i.e. (i1 fo~)=ei f i j ) ,  
the Brillouin theorem is automatically satisfied. Unfortunately, in the theory of 
BO's as well as GNO's this approach cannot be used because the one-particle 
operator u is defined only through its matrix elements (i[ u[j). 

For an additional specification of the matrix elements (hi ulh') and (p[ ulp') 
let us introduce an "ideal" requirement, that the one-particle energy ei be exactly 
equal to either minus ionization potential (for i e FS) or electron affinity (for i r FS), 

e. h = -- (IP)h (for all h ~ FS), (3.6a) 

e v = (EA)v (for all p r FS). (3.6b) 

Here (IP)h = E h ( N -  1)-  Eo(N ) is the "one-hole" ionization potential, E h ( N -  1) 
is the perturbed energy of ( N -  1)-electron system described in the zero-order 
approximation by [~h)=Xh[q~o>, and E0(N) is the perturbed ground-state 
energy of original N-electron system. 

Similarly, ( E A ) p = E p ( N +  I ) - E 0 ( N  ) is the "one-particle" electron affinity, 
Ep(N + 1) is the perturbed energy of (N + 1)-electron system described in the zero- 
order approximation by [~p> = X ;  [~o>. These both Conditions (3.6a) and (3.6b) 
are a generalization of the well-known Koopmans' theorem [45], which is valid 
in the Hartree-Fock theory only up to the first order. 

For the construction of the matrix elements <p[ u[p'> and <hi u[h'> satisfying 
Conditions (3.6a) and (3.6b), we now use the quasi-degenerate Rayleigh-Schr6- 
dinger perturbation theory [46]. Its main features have been published recently 
[29, 32], and therefore they will not be repeated here (cf. also Ref. 1-47]). Let 
us define two types of the model spaces, the "one-particle" model space 

~o+)-{l~p)=XTl~o); forall peFS} ,  (3.7a) 

and the "one-hole" model space 

~o-)----{Iq~h)=Xh]~o); forall haFS}.  (3.7b) 

The projectors on these spaces are defined by 

Po t+)= ~ I~p)(~l= Z Po(P), (3.8a) 
pCFS pCFS 

POt-)= ~ I~h)(~h]= ~ Po(h). (3.8b) 
h~FS h~FS 

According to the above mentioned fact that the orbitals (BO's or GNO's) within 
the subspaces of the occupied and unoccupied one-particle states, respectively, 
are determined only up to an unitary transformation, the two model eigenvalue 
problems [29, 30, 46] defined in the model spaces ~0 +) and f2~0 -) can be written 
in the form 

(H o + G~+s )zc) [~p> = epl~p>, (3.9a) 

(Ho + G~-S )Lc) lq~h> = -- eh l~h>, (3.9 b) 
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where the eigenvalues e v and -eh  satisfy the Conditions (3.6a) and (3.6b). The 
operators n~-+)zc are defined in the framework of the diagrammatic perturbation "" RS 

theory by 

(~1G~+-s)LCl~p) = (~1GRS~+-)I~)LC, (3.10) 

[~,,p) ~f2(O -+), the subscript LC means [cf. also Eq. (2.7b)] that only linked- 
connected diagrams contribute, and G~ ) are the Hermitian model interactions 
defined as follows [-46] 

G~-+)-p(-+)~r pc_+) ~(_+) (3.11a) RS - -  ~ 0 ~ t l ~  0 "-[- RS , 

"~Rs~+)-- ~1 ,~s P ~ ~  _ Ho +... , (3.11 b) 

~(_) 1 {p~o_)H1 1 - P, (-) h.c.}+ (3.11c) Ggs - -2 h~s -~f-~176 + """ 

Multiplying (3.9a) from the left by (~v,[, and (3.9b) by (~h,], and using the fol- 
lowing identities: (~h'[ 1-11 [~h)LC = (hi ulh'), (~v] Hi I ~ p , ) L C  = - -  (p[ ulp'), 
Hol~h)=--ehl~h) and nol~p)=~pl~p), we get the final expressions for the 
matrix elements 

(p[ ulp') = (~ol XpG~+s) S~ , [~o)Lc, (3.12a) 

(hi ulh') = - ( ~ol X~ G ( s )  X h I ~ o ) L C  . (3.12b) 

To summarize, the matrix elements (p[ u[p') and (hi ulh') are determined by 
(3.12 a) and (3.12 b) in such a way that the conditions (3.6 a) and (3.6 b) are satisfied. 
The diagrammatic interpretation of the individual contributions up to the second 
order is illustrated in Fig. 4. Then, using the standard rules of the Hugenholtz 
graphology [41, 42], the corresponding algebraic expressions to each diagram are 
obtained. In this connection we stress that the diagrammatic higher-order contribu- 
tions to the matrix elements (p[ ulp') and (h[ u[h') are also properly interpreted 
by applying the Brandow [-33] folded-diagram approach. 

Several words about the mathematical structure of the model interactions 
G(-+) should be said. As follows from the formal quasi-degenerate Rayleigh- Rs 
Schr6dinger perturbation theory [46], the Hermitian model interaction can be 
expressed by a simple symmetrization of non-Hermitian model interaction. 
Unfortunately, in the quasi-degenerate perturbation theory, this is only true up 
to the third order. The problem when the many-body (i.e. with diagrammatic 
interpretation) model interaction is a Hermitian operator has been extensively 
studied by Brandow [-35]. Similar conclusions are also given in our recent 
publication [-47] concerning the diagrammatic quasi-degenerate Rayleigh- 
Schr6dinger perturbation theory built up consequently on the theory of the 
resolvent operator. There exists one serious difficulty; namely, the mathematical 
structure of the higher-order contributions to the Hermitian model interaction is 
relatively complicated and without simple rules for their construction. Never- 
theless, the diagrammatic Hermitian model interaction is a well established method 
in the many-body theory, and some additional difficulties of its construction 
are of more computational than of theoretical significance. 
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Fig. 4. The first and second order diagrammatic contributions to the matrix elements (p[ ulp'> and 
(hi ulh'), where b.c. means a hermitian conjugated diagram 

According to the dependence of the Hartree-Fock operator f0 and the matrix 
elements (i[ utl) on the actual form of the one-particle eigensystem {li),ei;i = 1,2,... }, 
it is not possible to determine BO's or GNO's by a simple diagonalization of the 
one-particle eigenproblem (2.4). This means that (2.4) represents a nonlinear 
pseudo-eigenvalue problem which should be solved by an iterative procedure, for 
example, known from the Hartree-Fock theory 1-45]. We shall assume that the 
Hartree-Fock orbitals are a good starting approximation to BO's or GNO's, 
i.e. in the zeroth iterative step we solve the Hartree-Fock pseudo-eigenvalue 
problem (i[ fo~)=e~fu. In the next (first) step we shall use this Hartree-Fock 
eigensystem for the construction of the matrix elements (i[ f [ j )  defined by (2.4b). 
For the calculation of these matrix elements, the matrix elements (il u~) will be 
approximated in such a way that only those terms are taken into account which 
contain merely two-particle antisymmetrized matrix elements (ijlkl)A. Then 
diagonalizing the Hermitian matrix eigenproblem, formed from the matrix 
elements (il f ~ ) ,  we obtain a new eigensystem {li),~i;i= 1, 2,...}. In the next 
iteration step we shall use this last eigensystem for the construction of the new 
version of the matrix elements (il f [i), etc. until the self-consistency is obtained. 

4. Discussion 

Let us say a few words about the potentiality and applicability of the present 
approach to the theory of BO's and/or GNO's. First of all, the construction of the 
one-particle pseudo-eigenvalue problem, determining the BO's or GNO's, as a 
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straightforward generalization of the Hartree-Fock theory is, at least, a very 
interesting problem in the many-body theory of the finite-particle systems. 
In the course of the construction of the matrix elements (il u[j) we have met with 
the fact that the basic Conditions (1.3) and (1.7) determine the matrix elements 
(Pl ulh) only, where h e FS and p ~ FS. Therefore, for a complete specification of 
these matrix elements the additional conditions should be taken into considera- 
tion. In our case we have introduced an "ideal" assumption (3.6) in the framework 
of the independent-particle model, i.e. that the orbital energies are exactly equal 
to either minus ionization potential or electron affinity. 

Secondly, as has been mentioned in the Introduction, the theory of the BO's 
or GNO's is very useful and fruitful method for the direct inclusion of some 
correlation effects on the independent-particle level. Or in other words, the 
infinite summations of the preselected diagrams are automatically implanted 
in the theory of BO's and GNO's. For example, in our recent communication [32-1 
concerning the direct calculation of the low-lying excitation energies in the 
framework of the diagrammatic quasi-degenerate perturbation theory, we have 
shown that the model Hamiltonian can be exactly divided in the three terms, 
namely, 1 hole-1 hole, I particle-1 particle and 2hole-2particle terms. It is easy to 
see that if one uses the BO's or GNO's in this theory, the above mentioned 
1 hole-1 hole and 1 particle-1 particle terms are automatically vanishing, i.e. the 
model Hamiltonian for the calculation of the low-lying excitation energies 
contains only one term describing the 2hole-2particle effective interactions. 
For better information in this very interesting field of the present many-body 
theory we recommend to read the papers of Brandow [34, 35-1 and Kirson [39] 
dealing with up to date "microscopic" theory of nuclei. 

To close this Discussion we stress that this communication should be under- 
stood as a first attempt to solve the problem of the construction of a proper one- 
particle eigenproblem determining BO's or GNO's. While some theoretical as 
well as computational problems and questions still remain, we believe that the 
present communication might be of value as the first introductory step in this field. 
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